Question 15

loading...

Prev/Next links

Jambmaths question: 

Find the integral values of x and y satisfying the inequality 3y + 5x ≤ 15 given y > 0, y < 3, and x >0

Option A: 

(1,1), (1,2), (1,3)

Option B: 

(1,1), (2,1), (1,3)

Option C: 

(1,1), (3,1), (2, 2)

Option D: 

(1,1), (1,2), (2,1)

Jamb Maths Solution: 

3y + 5x ≤ 15

Since we have been given the range of values for x and y

For y:  0 < y < 3

For x:     x > 0

When x =1, y = 1

3(1) + 5(1) ≤ 15     {the inequality is satisfied}

 When x =1, y = 2

3(2) + 5(1) ≤ 15     {the inequality is satisfied}

When x =2, y = 1

3(1) + 5(2) ≤ 15    {the inequality is satisfied}

When x =2, y = 2

3(2) + 5(2) > 15    { the inequality is not satisfied}

When x =1, y = 3

The integral values of x, y are (1,1),(1,2), (2,1)

Option D

Jamb Maths Topic: 
Year of Exam: