Question 38

loading...

Prev/Next links

Jambmaths question: 

Find the value of x for which the function $f(x)=2{{x}^{3}}-{{x}^{2}}-4x+4$has a maximum value

Option A: 

-1

Option B: 

$-\frac{2}{3}$

Option C: 

1

Option D: 

$\frac{2}{3}$

Jamb Maths Solution: 

$\begin{align}  & f(x)=2{{x}^{3}}-{{x}^{2}}-4x+4 \\ & {{f}^{1}}(x)=6{{x}^{2}}-2x-4 \\ & \text{At stationary point }f(x)=0 \\ & 6{{x}^{2}}-2x-4=0 \\ & 3{{x}^{2}}-x-2=0 \\ & (3x+2)(x-1)=0 \\ & x=-\frac{2}{3}\text{ or }x=1 \\ & \text{To test for min or max} \\ & f''(x)=\frac{d}{dx}(6{{x}^{2}}-2x-4) \\ & {{f}^{''}}(x)=12x-2 \\ & \text{At }x=-\frac{2}{3} \\ & {{f}^{''}}(x)=12(-\tfrac{2}{3})-2=-10<0\text{   (max point)} \\ & \text{ At }x=-\tfrac{2}{3}\text{ will give a maximum value for the function} \\\end{align}$

Jamb Maths Topic: 
Year of Exam: