Question 38

loading...

Prev/Next links

Jambmaths question: 

$\begin{align}  & \text{Integrate }\left( \frac{1+x}{{{x}^{3}}} \right)dx \\ & \text{(A) }-\frac{1}{2{{x}^{2}}}-\frac{1}{x}+k\text{  (B) }-\frac{{{x}^{2}}}{2}-\frac{1}{x}+k\text{   (C) }{{x}^{2}}-\frac{1}{x}+k\text{   (D)  }2{{x}^{2}}-\frac{1}{x}+k \\\end{align}$

Jamb Maths Solution: 

$\begin{align}  & \int{\frac{1+x}{{{x}^{3}}}dx}=\int{\left( \frac{1}{{{x}^{3}}}+\frac{x}{{{x}^{3}}} \right)dx}=\int{({{x}^{-3}}+{{x}^{-2}})dx} \\ & \int{\frac{1+x}{{{x}^{2}}}dx}=\frac{{{x}^{-2}}}{-2}+\frac{{{x}^{-1}}}{-1}+K \\ & \int{\frac{1+x}{{{x}^{2}}}dx}=-\frac{1}{2{{x}^{2}}}-\frac{1}{x}+K \\\end{align}$

Jamb Maths Topic: 
Year of Exam: