Question 8

loading...

Prev/Next links

Jambmaths question: 

Simplify ${{(\sqrt{6}+2)}^{2}}-{{(\sqrt{6}-2)}^{2}}$

Option A: 

$2\sqrt{6}$

Option B: 

$4\sqrt{6}$

Option C: 

$8\sqrt{6}$

Option D: 

$16\sqrt{6}$

Jamb Maths Solution: 

$\begin{align}  & \text{Note: }{{a}^{2}}-{{b}^{2}}=(a-b)(a+b)\text{    }Difference\text{ }of\text{ }two\text{ }squares \\ & {{(\sqrt{6}+2)}^{2}}-{{(\sqrt{6}-2)}^{2}}=\left[ (\sqrt{6}+2)+(\sqrt{6}-2) \right]\left[ (\sqrt{6}+2)-(\sqrt{6}-2) \right] \\ & {{(\sqrt{6}+2)}^{2}}-{{(\sqrt{6}-2)}^{2}}=\left[ \sqrt{6}+2+\sqrt{6}-2 \right]\left[ \sqrt{6}+2-\sqrt{6}+2 \right] \\ & {{(\sqrt{6}+2)}^{2}}-{{(\sqrt{6}-2)}^{2}}=2\sqrt{6}\times 4 \\ & {{(\sqrt{6}+2)}^{2}}-{{(\sqrt{6}-2)}^{2}}=8\sqrt{6} \\\end{align}$

Jamb Maths Topic: 
Year of Exam: