Jambmaths
Maths Question | |
---|---|
Question 21 |
A matrix $P=\left( \begin{matrix} a & b \\ c & d \\\end{matrix} \right)$is such that PT = -P. PT is the transpose of P. If b = 1, then P is |
Question 22 |
Find the value of t for which the determinant of the matrix$\left( \begin{matrix} t-4 & 0 & 0 \\ -1 & t+1 & 1 \\ 3 & 4 & t-2 \\\end{matrix} \right)$is zero |
Question 12 |
If $P=\left( \begin{matrix} 3 & -2 & 4 \\ 5 & 0 & 6 \\ 7 & 5 & -1 \\\end{matrix} \right)$ then –2p is |
Question 13 |
Given the matrix $k=\left( \begin{matrix} 2 & 1 \\ 3 & 4 \\\end{matrix} \right)$ the matrix k2 +k +1 is , where I is the 2× 2 identity matrix |
Question 16 |
Evaluate $\left| \begin{matrix} -1 & -1 & -1 \\ 3 & 1 & -1 \\ 1 & 2 & 1 \\\end{matrix} \right|$ |
Question 16 |
If $P=\left( \begin{matrix} 2 & 1 \\ -3 & 0 \\\end{matrix} \right)$ and I is a 2 × 2 unit matrix. Evaluate ${{p}^{2}}-2p+4I$ |
Question 24 |
If $N=\left( \begin{matrix} 3 & 5 & -4 \\ 6 & -3 & -5 \\ -2 & 2 & 1 \\\end{matrix} \right)$, find $\left| N \right|$ |
Question 14 |
$\left| \begin{matrix} -x & 2 \\ 4x & 1 \\\end{matrix} \right|=\left| \begin{matrix} 3 & 3x \\ 4 & -5 \\\end{matrix} \right|$, find the value of x |
Question 21 |
A matrix P has an inverse ${{P}^{-1}}=\left( \begin{matrix} 1 & -3 \\ 0 & 1 \\\end{matrix} \right)$find P |
Question 30 |
The inverse of the matrix $\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\\end{matrix} \right]$is |
Question 37 |
if $P=\left( \begin{matrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ -1 & 0 & 1 \\\end{matrix} \right)$, then $\left| P \right|$ is |
Question 48 |
If $P=\left( \begin{matrix} 1 & 3 & 2 \\ 4 & 5 & -1 \\ -3 & 2 & 0 \\\end{matrix} \right)$find the determinant of matrix P |
Question 50 |
If M and N are two matrices defined by $M=\left( \begin{matrix} 1 & 3 & 2 \\ 4 & 5 & -1 \\ -3 & 2 & 0 \\\end{matrix} \right)$and$\left( \begin{matrix} 1 & -2 & 3 \\ 4 & -1 & 5 \\ 2 & -3 & -1 \\\end{matrix} \right)$,evaluate 2M – 3N |
Question 31 |
If $x=\left[ \begin{matrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ -1 & 0 & 1 \\\end{matrix} \right]$ and $y=\left[ \begin{matrix} -1 & 1 & 2 \\ 0 & -1 & -1 \\ 2 & -1 & -1 \\\end{matrix} \right]$find 2x – y |
Question 37 |
Find p, q for which$\left( \begin{matrix} 2p & 8 \\ 3 & -5q \\\end{matrix} \right)\left( \begin{align} & 1 \\ & 2 \\\end{align} \right)=\left( \begin{align} & 24 \\ & -17 \\\end{align} \right)$ |
Question 22 |
$\left( \begin{matrix} 3 & -2 \\ -7 & 5 \\\end{matrix} \right)+2\left( \begin{matrix} -2 & 4 \\ 3 & -1 \\\end{matrix} \right)$ |
Question 23 |
If f(x) = 3x – 2, P =$\left( \begin{matrix} 2 & 1 \\ -1 & 0 \\\end{matrix} \right)$and I is 2 × 2, identity matrix, evaluate f(p) |
Question 23 |
Find the value of x and y respectively if $\left( \begin{matrix} 1 & 0 \\ -1 & -1 \\ 2 & 2 \\\end{matrix} \right)+\left( \begin{matrix} x & 1 \\ -1 & 0 \\ y & -2 \\\end{matrix} \right)=\left( \begin{matrix} -2 & 1 \\ -2 & -1 \\ -3 & 0 \\\end{matrix} \right)$ |
Question 24 |
If $\left( \begin{matrix} -2 & 1 \\ 2 & 3 \\\end{matrix} \right)\left( \begin{matrix} p & q \\ r & s \\\end{matrix} \right)=\left( \begin{matrix} 1 & 0 \\ 0 & 1 \\\end{matrix} \right),$what is the value of r |
Question 22 |
If $Q=\left( \begin{matrix} 9 & -2 \\ -7 & 4 \\\end{matrix} \right),\text{then }\left| Q \right|\text{is}$ |
Question 23 |
If $\left( \begin{matrix} x+3 & x+2 \\ x+1 & x-1 \\\end{matrix} \right)$, evaluate x if $\left| P \right|=-10$ |
Question 25 |
If $\left| \begin{matrix} x & 3 \\ 2 & 7 \\\end{matrix} \right|=15$find the value of x |
Question 26 |
Evaluate $\left| \begin{matrix} 2 & 0 & 5 \\ 4 & 6 & 3 \\ 8 & 9 & 1 \\\end{matrix} \right|$ |
Question 27 |
If P = $\left( \begin{matrix} 2 & -3 \\ 1 & 1 \\\end{matrix} \right)$what is P -1 |
Question 24 |
If $\left| \begin{matrix} 2 & 3 \\ 5 & 3x \\\end{matrix} \right|=\left| \begin{matrix} 4 & 1 \\ 3 & 2x \\\end{matrix} \right|$ find the value of x |
Question 25 |
Evaluate $\left| \begin{matrix} 4 & 2 & -1 \\ 2 & 3 & -1 \\ -1 & 1 & 3 \\\end{matrix} \right|$ |
Question 26 |
The inverse of matrix N =$\left( \begin{matrix} 2 & 3 \\ 1 & 4 \\\end{matrix} \right)$ is |
Question 23 |
if $\left| \begin{matrix} 5 & 3 \\ x & 2 \\\end{matrix} \right|=\left| \begin{matrix} 3 & 5 \\ 4 & 5 \\\end{matrix} \right|$, find the value of x |
Question 24 |
Given that I3 is a unit matrix of order 3 find $\left| {{I}_{3}} \right|$ |
Question 22 |
$\begin{align} & \text{If }P=\left[ \begin{matrix} 5 & 3 \\ 2 & 1 \\\end{matrix} \right]\text{ and }Q=\left[ \begin{matrix} 4 & 2 \\ 3 & 5 \\\end{matrix} \right],\text{ find }2P+Q \\ & (A)\text{ }\left[ \begin{matrix} 8 & 14 \\ 7 & 7 \\\end{matrix} \right] \\ & (B)\text{ }\left[ \begin{matrix} 7 & 7 \\ 14 & 8 \\\end{matrix} \right] \\ & (C)\text{ }\left[ \begin{matrix} 14 & 8 \\ 7 & 7 \\\end{matrix} \right] \\ & (D)\text{ }\left[ \begin{matrix} 7 & 7 \\ 8 & 14 \\\end{matrix} \right] \\\end{align}$ |
Question 23 |
$\begin{align} & \text{Find the inverse of }\left[ \begin{matrix} 5 & 3 \\ 6 & 4 \\\end{matrix} \right] \\ & (A)\left[ \begin{matrix} 2 & \tfrac{3}{2} \\ -3 & \tfrac{5}{2} \\\end{matrix} \right] \\ & (B)\left[ \begin{matrix} 2 & -\tfrac{3}{2} \\ -3 & -\tfrac{5}{2} \\\end{matrix} \right] \\ & (C)\left[ \begin{matrix} 2 & -\tfrac{3}{2} \\ -3 & \tfrac{5}{2} \\\end{matrix} \right] \\ & (D)\,\left[ \begin{matrix} 2 & \tfrac{3}{2} \\ -3 & -\tfrac{5}{2} \\\end{matrix} \right] \\\end{align}$ |
Question 22 |
Find y, if\[left( \begin{matrix} 5 & -6 \\ 2 & 7 \\\end{matrix} \right)\left( \begin{align} & x \\ & y \\\end{align} \right)=\left( \begin{align} & 7 \\ & -11 \\\end{align} \right)\] |
Question 23 |
If $\left| \begin{matrix} -x & 12 \\ -1 & 4 \\\end{matrix} \right|=-12$, find x |
Question 24 |
Find the value of $\left| \begin{matrix} 0 & 3 & 2 \\ 1 & 7 & 8 \\ 0 & 5 & 2 \\\end{matrix} \right|$ |
Question 17 |
If $P=\left( \begin{matrix} 2 & 3 \\ 4 & 5 \\\end{matrix} \right)$ and $Q=\left( \begin{matrix} 4 & 2 \\ 3 & 3 \\\end{matrix} \right)$ |
Question 30 |
Find the value of $\left| \begin{matrix} 0 & 3 & 2 \\ 1 & 7 & 8 \\ 0 & 5 & 4 \\\end{matrix} \right|$ |